
 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 1 of 47

Quarch Technology Ltd

Quarch Automation Manual

Thursday, 13 June 2024

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 2 of 47

Change History

1.0 May 2019 Initial Release

1.1 August 2019 Added config_files and calibration module

1.2 August 2019 Added quarchpy run package

1.3 October 2020 Stats and snapshot for QPS added

1.4 November 2020 Save CSV command added

1.5 Feb 2024 Added new QPS commands and multi-rate

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 3 of 47

Table of Contents

Change History ... 2

Table of Contents ... 3

Introduction .. 5

Requirements ... 7

Installation .. 8

Python ... 8

QuarchPy Package ... 8

Linux USB Permissions .. 10

Basic Usage .. 11

Quarchpy Control ... 13

Module: device .. 13

Module: iometer .. 17

Module: fio .. 18

Module: config_files .. 19

Module: calibration .. 20

Module: Run .. 21

Power studio commands ... 22

QIS Control ... 24

Sending a command ... 24

Basic command set ... 24

Debug commands ... 26

Streaming commands ... 27

Real-time resampling .. 30

Power Studio Control ... 31

Sending a command ... 31

Basic command set ..Error! Bookmark not defined.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 4 of 47

Streaming commands ..Error! Bookmark not defined.

User data commands ...Error! Bookmark not defined.

Display commands ...Error! Bookmark not defined.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 5 of 47

Introduction

Quarch provides tools and software which is simple to automate from external

sources.

This manual provides an overview of the software automation options and is the

main source of documentation for the APIs.

Only the software APIs are documented here, for full details of the commands that

can be sent to individual hardware modules, you will still have to look at the relevant

technical manual. Download these from the product page on our website:

https://quarch.com/product-search

Quarch modules can be easily controlled using Python through multiple interface

options:

 USB

 Serial

 REST

 Telnet

QuarchPy is a python package designed to provide an easy to use API which will work

seamlessly over any of the communication options.

The package contains all prerequisites needed as a single PyPI project which can be

installed from the python online repository or a downloaded local copy.

This makes it easy to install and keep up to date, while also providing you with full

access to the source code if you want to make changes or additions.

The package also includes several additional sections

 QIS (Quarch Instrument Server)

This is a headless Java application which handles all the data and multi-

thread intensive work needed to stream high-speed data from Quarch Power

Modules.

While it is possible to control power modules with pure Python code, the

efficiency is much poorer and streaming speeds will be limited.

QIS is automatically started when a ‘QIS’ type connection is requested.

https://quarch.com/product-search

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 6 of 47

 QPS (Quarch Power Studio)

This is a Java based application for control of the Quarch Power Modules.

Also available for download from our site, a version is supplied here as QPS

can be automated from Python and controlled via script.

If you request a QPS connection, the application can be automatically

launched, and you can see the live power data while the automatic capture

is running. This provides a great way to get an overview on the results while

running a fully automated test.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 7 of 47

Requirements

 Windows, Linux or OSX

 Python 2.x or Python 3.x

We strongly recommend using Python 3.x. Our more recent application

notes require this, though we try to keep compatibility where possible

 Quarch USB driver (Windows only, if using USB comms mode)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 8 of 47

Installation

Python

If Python is not installed on your system, go to https://www.python.org/downloads/ and

choose the relevant version for your system.

Under Windows it is sensible to ensure the Python installation directory and

PythonXX\Scripts are included in the PATH environment variable. See HERE for

instructions on how to do this.

QuarchPy Package

The Quarch Python package can be installed from the Python web repository

(assuming you have internet access) or via the download from our site which

contained this document.

Web Install

From the command line:

>pip install quarchpy

If this fails, your path to “pip” may not be set, you can instead run:

>python –m pip install quarchpy

https://www.python.org/downloads/
https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 9 of 47

Local Install

If you want to install from a downloaded .whl file, download the file from

https://pypi.org/manage/project/quarchpy/releases/, navigate to the folder containing

the quarchpy-x.y.z-py2.py3-none-any.whl file and run:

>pip install quarchpy-x.y.z-py2.py3-none-any.whl

If this fails, your path to ‘pip’ may not be set, you can instead run:

>python –m pip install quarchpy-x.y.z-py2.py3-none-any.whl

Upgrade

If you already have QuarchPy installed, you will get a failure message. If you want to

upgrade to a new version, you need to add the ‘--upgrade’ command:

>pip install --upgrade quarchpy

The --upgrade command can similarly be used in any of the other examples, to load

from a local install folder.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 10 of 47

Linux USB Permissions

Linux systems require administrative rights to run python scripts for modules

connected via USB. You can do that by running your script as root (sudo command)

or changing the default USB permissions. This is done by creating a text file called

Quarch-permissions-usb.rules

For ubuntu systems, you need to enter into that file:

SUBSYSTEM == “usb”, ATTRS{idVendor}==”16d0”, MODE=”0666”

SUBSYSTEM == “usb_device”, ATTRS{idVendor}==”16d0”, MODE=”0666”

For Centos systems, you need:

SUBSYSTEM == “usb”, ATTRS{idVendor}==”16d0”, GROUP=”users”,

MODE=”0666”

SUBSYSTEM == “usb_device”, ATTRS{idVendor}==”16d0”, GROUP=”users”,

MODE=”0666”

This file needs to be placed in /etc/udev/rules.d

Finally, the system either needs to be restarted or run the command:

>sudo udevadm control -reload

Then reconnect the USB device.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 11 of 47

Basic Usage

We strongly recommend you download a relevant application note to demonstrate

the use of the Python API, only the basics are shown here.

Below is a simple example to import and use a Quarch module.

Imports device control from the Quarchpy package

from quarchpy.device import *

Scan for quarch devices on the system (across all interfaces)

deviceList = scanDevices ('all')

Use the user selection function to display the list and choose one

moduleStr = userSelectDevice (deviceList)

Create the module, using the returned connection string

myDevice = quarchDevice(moduleStr)

You can also specify a device directly. For USB connections, you specify a full, or

partial serial number, as found on the product label.

For LAN connections (ReST and Telnet) you can specify either an IP address, or

NetBIOS name (if supported by your network). The default NetBIOS name for most

modules is the serial number:

myDevice = quarchDevice (“telnet:192.168.1.55”)

Or

myDevice = quarchDevice (“telnet:QTL1079-03-137”)

For Serial connections, specify the COM port on windows

myDevice = quarchDevice (“SERIAL:COM4”)

Or the linux serial port ID

myDevice = quarchDevice (“SERIAL:ttyS0”) or you may need

myDevice = quarchDevice (“SERIAL:/dev/ttyS0”)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 12 of 47

You can now send commands to the module. The full command list for each module

can be found in its Technical Manual, which can be downloaded from their product

pages:

https://quarch.com/product-search

To send the simple ‘hello?’ command, use:

myDevice.sendCommand ("hello?")

This function will return the command response, so you can easily see the result

with:

print (myDevice.SendCommand("hello?"))

Finally you must close the connection with

myDevice.closeConnection()

https://quarch.com/product-search

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 13 of 47

Quarchpy Control

Module: device

This module provides the basic connection mechanism to send commands to

devices.

> from quarchpy.device import *

Device Classes Purpose

quarchDevice Base device type, for control of any Quarch device

quarchArray
Extended class with for Array Controllers. Adds functions

to scan for and handle sub-devices.

subDevice
Support class to control sub devices of quarchArray, as if

they are directly connected as a standard quarchDevice

quarchPPM
Extended class with for Power Module, adds streaming

commands

Additional Classes Purpose

quarchQPS Class for automation of Quarch Power Studio

Helper Functions Purpose

scanDevices Scan for Quarch devices, both locally and over LAN

listDevices Display the devices found

userSelectDevice Ask the user to select a Quarch device from a list

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 14 of 47

Controlling devices

The base device class is used for all initial connections

quarchDevice(connectionString, [ConType=”PY”],[timeout=”5”])

PY – (default) direct python connection to the module, this is the option to use in

most cases

QIS – Quarch Instrument Server, connects to a module via QIS, this is used to gain

the additional ‘streaming’ features from power modules when you want to record

large amounts of power data via a script.

QPS – Quarch Power Studio, connects to a module via QPS, this is used to

automate a power module with the additional features of Power Studio. This allows

graphical analysis of power traces, custom user channels, annotations and more.

Connection strings

‘connectionString’ is in the form INTERFACE:PATH

The interface types available depend on the device you are using, and how you have

cabled it

INTERFACE = [USB, SERIAL, REST, TCP, TELNET]

PATH is the unique path to the device, examples:

Connect to the first QTL1743 on found on USB

myDevice = quarchDevice(“USB:QTL1743”)

Connect to a specific QTL1743 on USB

myDevice = quarchDevice(“USB:QTL1743-02-015”)

Connect to the device on COM4

myDevice = quarchDevice(“SERIAL:COM4”)

Connect to an IP address, using Telnet

myDevice = quarchDevice(“TELNET:192.168.1.16”)

Connect to an IP address, using TCP

myDevice = quarchDevice(“TCP:192.168.1.16”)

Connect to an IP address, using TCP (or other LAN option)

Default netBIOS names are the device serial number

myDevice = quarchDevice(“TCP:QTL1079-03-010”)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 15 of 47

Example – Standard Device

Connect to a module and send a command

myDevice = quarchDevice(“USB:QTL1743”)

myDevice.sendCommand("hello?")

Example – Power module via QIS

Connect to a module

myDevice = quarchDevice(“USB:QTL1999”, ConType = "QIS")

Convert the base device to a ‘Programmable Power Module’ device

myPowerDevice = quarchPPM (myDevice)

myPowerDevice.sendCommand("hello?")

Stream power measurement data to file

myPowerDevice.sendCommand ("record:trigger:mode manual")

myPowerDevice.startStream(“Stream1.txt”, 2000, “My example stream”)

Example – Power module via QPS

Connect to a module

myDevice = quarchDevice(“USB:QTL1999”, ConType = "QPS")

Convert the base device to a ‘Power Studio’ controller and open it

myQpsDevice = quarchQPS(myDevice)

myQpsDevice.openConnection()

Send a command, as with the other connection methods

myQpsDevice.sendCommand ("record:averaging 32k")

Example – Array controller

Connect to an Array (over USB in this example)

myDevice = quarchDevice(“USB:QTL1079”)

Extend this with the quarchArray class

myArray = quarchArray(myDevice)

Get access to the device on port number 2

myModuleTwo = myArray.getSubDevice(2)

myModuleTwo.sendCommand (“hello?”)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 16 of 47

More information

Relevant application notes

https://quarch.com/file/an-006-python-control-quarch-modules

Basic control examples for Quarch devices

https://quarch.com/file/AN012-QIS-python-control-power-modules

Automating power modules, streaming power data to CSV files

https://quarch.com/file/an-006-python-control-quarch-modules
https://quarch.com/file/AN012-QIS-python-control-power-modules

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 17 of 47

Module: iometer

This module provides automation of iometer for workload generation. Iometer must

be available on the host system. These functions assist the user in running one or

more workloads and getting results in real-time, for display in Power Studio or

similar.

These functions are used in application note AN-016, and we recommend you work

from here if you wish to use these features in your own code.

> from quarchpy.iometer import *

Functions Purpose

runIOMeter Executes iometer as a subprocess

processIometerInstResults Parses the real time results file created by iometer

readIcfCsvLineData
Reads in data from a CSV file describind

workloads to run

generateIcfFromCsvLineData
Generates an iometer required .icf file from CSV

file parameters

generateIcfFromConf
Generates an iometer required .icf file from a

Quarch supplied .conf template format file

More information

Relevant application notes

https://quarch.com/file/AN-016-qps-automation-iometer

Iometer automation with Power Studio, displaying IOPS Vs power performance

https://quarch.com/file/AN-016-qps-automation-iometer

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 18 of 47

Module: fio

This module provides automation of FIO for workload generation. FIO must be

available on the host system. These functions assist the user in running one or more

workloads and getting results in real-time, for display in Power Studio or similar.

These functions are used in application note AN-017, and we recommend you work

from here if you wish to use these features in your own code.

> from quarchpy.fio import *

Functions Purpose

runFIO
Executes fio as a subprocess. Provided callback

functions give access to the real-time data

More information

Relevant application notes

https://quarch.com/file/an017-qps-performance-test-fio

FIO automation with Power Studio, displaying IOPS Vs power performance

https://quarch.com/file/an017-qps-performance-test-fio

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 19 of 47

Module: config_files

This module provides parsing of the Quarch configuration files which list the full

capabilities of the different modules. These abilities allow you to write scripts which

can work with multiple different modules, taking account of the relative abilities of

each.

> from quarchpy.config_files import *

Functions Purpose

get_config_path_for_module

Locates the correct configuration file for a given

module, matching the hardware and firmware

versions.

parse_config_file
Parses a configuration file into a module

capabilities class

TorridonBreakerModule class functions are:

Functions Purpose

get_signals Returns a list of module signals

get_signal_groups Returns a list of signal groups

get_sources Returns list of control sources

get_general_capabilities
Returns a dictionary of general capabilities (mainly

binary flags)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 20 of 47

Module: calibration

The calibration module provides access to the calibration feature on Quarch power

modules, allowing the user to calibrate and verify their devices on-site.

This module is accessed by running the calibration utility. When run with all

parameters supplied, the calibration can run automatically. When required

parameters are missing, the utility will run in interactive mode and request the user to

choose the options at run time.

Arguments are passed in using key value pair eg.

-mUSB:QTL1999-01-002 -acalibrate - pC:\\Users\\Public\\Documents

-a, action the calibration action you would like to perform. Choices: 'calibrate','verify'

-m, module IP address or net bios name of the module you would like to use

-i, instrument IP address or net BIOS name of calibration instrument

-p path path to store calibration logs

-l logging Lever of logging to report choices: 'warning', 'error', 'debug'

-u userMode Internal use only, should always be set to 'console'(and defaults to console)

-t temperature Encloser temperature that the unit is calibrated at.

> python -m quarchpy.calibration [args]

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 21 of 47

Module: Run

The run package within quarchpy allows the user to run selected scripts and

applications from the command line with one line. Quarchpy run can be utilized with

the following command:

> python -m quarchpy.run [application] [args]

Applications/Scripts Description

debug_info

Takes no arguments. Gives information system

information about the host computer and scans for

available Quarch devices on the system to test the basic

functionality of quarchpy and allow a debug starting point

for possible issues.

qcs
Takes no arguments. Launches Quarch Compliance suite

back end.

calibration_tool

Takes in: action, module, instrument, path, logging,

userMode, temperature. More information can be found in

the calibration section.

Launches the calibration tool.

qis Launches Quarch Instrument Server.

qps
Takes in: keepQisRunning:True/False

Launches Quarch Power Studio.

upgrade_quarchpy Launches Upgrade Quarchpy Script.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 22 of 47

Power studio commands

Power studio does not have its own module, but is included as part of the

quarchDevice module. The quarchQPS class has the following functions:

Functions Purpose

getCanStream Returns true of the module supports streaming

startStream
Starts streaming to the given path, returns a quarchStream

object for interacting with the stream data

quarchStream has a number of useful functions. These will affect the GUI trace

view:

Functions Purpose

addAnnotation

Add an annotation to the trace in real time (or at a

specified time). Annotations allow the trace statistics to

be split between test regions.

addComment
Add an annotation comment to the trace in real time (or

at a specified time)

createChannel
Creates a custom channel to add additional data, such

as drive temperature or IOPS

hideChannel Hides the given channel

showChannel Shows the given channel

channels Lists the channels

stopStream Ends the current stream

addDataPoint Adds a data point to a custom channel

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 23 of 47

takeSnapshot
Triggers QPS take snapshot function and saves it in the

streams directory.

get_stats
Returns the QPS annotation statistics grid information

as a pandas dataframe object

stats_to_CSV Saves the statistics grid to a specified csv file.

get_custom_stats_range
Returns the QPS statistics information over a specific

time ignoring any set annotations.

saveCSV

This writes the whole stream data to csv file. This

included all power data, custom channel data,

annotations, and comments.

More information

Relevant application notes

https://quarch.com/file/AN-015-automating-qps

Basic example showing scripted automation with QPS

https://quarch.com/file/an017-qps-performance-test-fio

FIO automation with Power Studio, displaying IOPS Vs power performance

https://quarch.com/file/AN-016-qps-automation-iometer

Iometer automation with Power Studio, displaying IOPS Vs power performance

https://quarch.com/file/AN-015-automating-qps
https://quarch.com/file/an017-qps-performance-test-fio
https://quarch.com/file/AN-016-qps-automation-iometer

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 24 of 47

QIS Control

QIS is a java based server app. It runs in the background when a ‘QIS’ type

connection is requested. It also runs as part of Power Studio.

QIS handles streaming of power data from Quarch Power Modules. It deals with

buffering, resampling and processing of the raw data.

In most cases, you will not need to use QIS directly, you will access is via the

quarchpy API. However, QIS can run on its own and be controlled from any TCP

compatible automation system.

A version of QIS is installed automatically with quarchpy, or can be downloaded from

the Quarch website.

When run, QIS uses TCP and/or USB to connect to one or more Power Modules.

You can control QIS via a simple network port

Port Purpose

9722
Default TCP port for QIS control. This can be edited in the QIS

properties file.

Sending a command

Commands are in simple text form. Commands beginning ‘$’ are parsed by QIS. All

other commands are assumed to be intended for a specific Power Module (and so

should follow the command spec as set out in the module’s technical manual).

TCP commands are sent as a simple UTF-8 text string with \r\n termination:

“start stream\r\n”

Basic command set

$help

 Displays copyright, license and help information.

$scan

Perform a scan for connected network attached devices via UPD port

30303.This command returns immediately but the actual scan takes about 3

seconds to complete. It is recommended to wait for a period before trying to

$list the devices or select a device.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 25 of 47

$scan LanAddress

Scan for a device at a specific tcp/ip address, used where the network does

not allow UDP broadcast identification.

$scan tcp::192.168.1.90

>Located Device: qtl1944-01-020

$scan tcp::192.168.1.91

>No Quarch Device Found at: 192.168.1.91

Once a device tcp/ip address has been scanned successfully the device will

appear in the $list and is available for use.

$list

$list details

Lists the devices seen by QIS (optionally with additional details for debug).

The list is numbered 1-n for easy selection.

$default listNumber

$default deviceName

As QIS can control more than one Power Module at a time, you can specify a

‘default’ device to simplify control

Specify the default module by position in the last $list

$default 2

Specify the default module by connection path

$default tcp::192.168.1.90

After this, any non ‘$’ command will go to the default

hello?

>HD Programmable Power Module +Triggering

$shutdown

Closes QIS.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 26 of 47

Addressed commands

If you do not use the $default command, perhaps because you are controlling more

than one device at a time, you MUST specify the device for every command:

tcp::192.168.1.90 hello?

>HD Programmable Power Module +Triggering

Here we chose to send the ‘hello?’ command to the specific LAN connected module.

Debug commands

These commands help to debug issues

$debug [on|off]

$debug?

Sets/returns the debug more flag. Debug mode allows you to monitor

historical events.

$debug history

Returns the most recent debug messages

$sysinfo

Displays memory usage and task information

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 27 of 47

Streaming commands

These commands are directed to a specific module (using $default or the module

path) BUT are executed by QIS, as they are complex actions requiring large

amounts of data to be transferred. QIS can buffer around 8 million stripes, allowing

you to pull down the data when you are ready for it.

The commands allow you to easily handle the large amounts of high resolution data

than can be returned by a power module.

Command examples below all assume that $default has been used to set the default

module.

stream mode header [v1|v2|v3]

Selects the header version to return with the ‘stream text header’

command. Setting this to v3 is recommended for all new development

stream text header

Returns the stream header information from the most recent stream to be run

on the selected module

Assuming you are using a recent version of QIS, this will be an XML encoded

header, containing data on the module and each channel

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 28 of 47

Header Format (v3)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <header>

 # Header version

 <version>V3</version>

 # Future function, tracks mainPeriod for now

 <devicePeriod>4096us</devicePeriod>

 # Sampling rate of module

 <mainPeriod>4096uS</mainPeriod>

 # Legacy information, can be ignored

 <legacyVersion>5</legacyVersion>

 <legacyFormat>15</legacyFormat>

 <legacyAverage>10</legacyAverage>

 # List of all measured channels and their units

 <channels>

 <channel>

 # Name of channel, and its group name

 <name>Status</name>

 <group>status</group>

 # Channel units and max value range

 <units>NA</units>

 <maxTValue>0</maxTValue>

 # Position in return data

 <dataPosition>0</dataPosition>

 </channel>

 <channel>

 <name>5V</name>

 <group>voltage</group>

 <units>mV</units>

 <maxTValue>16384</maxTValue>

 <dataPosition>1</dataPosition>

 </channel>

 …more channels…

 </channels>

 </header>

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 29 of 47

stream?

Returns running status and buffer information for the current stream operation

from the power module, eg:

Stopped: User

Stripes Buffered: 94 of 8388608

or:

Running

Stripes Buffered: 1167 of 8388608

stream text [all|number of stripes]

Returns a number of data stripes in formatted space delimited ASCII text from

the stream buffer, example:

 stream text 3

0 0 7 2 8 49

1 0 7 2 8 50

2 0 7 2 8 50

Data values are defined by the stream header and in the form:

 [Stripe number] [Status] [Data channel 0 value] [Data channel 1 value] […]

The max number of stripes returned will never exceed 4096 per call. If fewer

stripes are available than is requested, the smaller number will be

immediately returned.

stream bin [all|number of stripes]

Returns a number of data stripes in compressed binary format for faster

transfer. This is used by Power Studio and not generally required by the user.

Please contact support@quarch.com for details if needed.

Stream mode power [enable|disable]

Enable/disable automatic power calculation. When enabled, this creates new

‘power’ channels for each rail. Only valid when both voltage and current

values are available for a given channel. Default is disabled

Stream mode power total [enable|disable]

Enable/disable internal power calculation and total power calculation. Only

valid when two or more power calculations are available. Default is disabled

and once enabled a stream mode power [enable|disable] command will

disable this option.

mailto:support@quarch.com

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 30 of 47

Real-time resampling

stream mode resample?

stream mode resample off

stream mode resample 1..n[us|ms|s]

Force stream data to specified resample period. This allows arbitrary

resampling to any required time-base. This involves averaging of every

sample into the new scale, so no information is lost. (average power will

always remain the same for example)

Resampling can only reduce the number of samples. If a resample time is

selected which is smaller than the current instrument rate, the instrument

setting will be used.

As an example, using hardware averaging (a device command), the closest

we can get to 100mS is use 16k averaging of the 4uS base rate (2^16 =

16,384) = 64uS

record:averaging 16k

Instead, using the QIS software resample command you can request the

exact 100mS rate. This is more flexible and easier to understand than

worrying about 1uS / 4uS base sample rates and averaging factors.

stream mode resample 100mS

For devices that support multiple groups (multi-rate feature of PAMs), an

extended version of the command exists to set the resample time for each

group.

stream mode resample [group_number] 1..n[us|ms|s]

In this example, we set group 0 (analogs) to 100mS and group 1

(digitals) to a faster 10uS rate.stream mode resample 0 100mS

stream mode resample 1 10uS

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 31 of 47

QPS Control

Quarch Power Studio is a java based analysis application. It allows you to easily

view and analyse huge power data recordings.

In most cases, you will not need to control QPS directly, you will access is via the

quarchpy API. However, QPS can be controlled from any TCP compatible

automation system.

A version of QPS is installed automatically as part of quarchpy, or can be

downloaded directly from the Quarch website.

You can control QPS via a simple network port

Port Purpose

9822 Default TCP port for QPS control

Sending a command

Commands are in simple text form. Commands beginning ‘$’ are parsed by QPS. All

other commands are passed down the communications line to QIS and then finally to

the connected Power Module (and so should follow the command spec as set out in

the module’s technical manual).

TCP commands are sent as a simple UTF-8 text string with \r\n termination:

“$stream record\r\n”

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 32 of 47

All commands QPS V2 Commands Overview

All commands

Command Brief Description

$chart channel hide Hides a channel on the QPS chart main view

$chart channel show Shows a channel on the QPS chart main view

$chart snapshot Takes a snapshot of the chart, timeline and channels windows (or one of the
before mentioned) and saves it to the file path provided

$debug list
commands

Returns a list of commands

$module connect Connects QPS to the provided Quarch Module and opens the Chart main view read
to use QPS with that module.

$module disconnect Disconnects the current Quarch module connection

$module list Lists available quarch modules

$module list details Lists available quarch modules in detail

$module name Returns the connected Quarch modules name

$module scan Starts a scan for new Quarch modules (Use $module list to display found modules)

$qis launch Launches new QIS instance (The backend to QPS)

$qis shutdown Shuts down current QIS instance (The backend of QPS)

$qps hide Hides the QPS application

$qps show Shows the QPS application

$stream annotation
add

Adds an annotation to a stream. Annotations are used to mark points in time like
the start of a test and stats between annotations are automatically calculated in
the stats grid.

$stream annotations
list

Returns a list of all annotations with their titles in order of occurrence

$stream annotations
table

Returns a table of all annotations with additional information such as title, time,
additional text, y position on chart.

$stream channel add Creates a new channel

$stream channel add
synthetic

Defines a new synthetic channel

$stream channel
clear synthetic

Clears all created functions

$stream channel list Returns a list of all channels in the stream

$stream channel
remove synthetic

Deletes a previously created synthetic channel

$stream channel
table

Returns details on all channels in the stream

$stream channels Returns just the names of the channels in the stream

$stream comment
add

Adds a comment to the stream (Comments are the same as annotations but don’t
interact with stats calculations)

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 33 of 47

$stream data add Adds a datapoint of a given value at a certain time to the specified channel

$stream export Saves the stream data to file in the specified format

$stream read Reads stream data between from a given start point and end point

$stream record Starts the QPS stream

$stream record
duration

Returns the total stream recording time

$stream start time Returns the time that stream started

$stream stats export Saves the stream statistics to a file

$stream stats table Returns the stream statistics

$stream stop Stops the current running stream

$stream stop time Returns the time that streaming stopped

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 34 of 47

All commands

Below is a list of all commands with more information on how to use them and the arguments

that can be passed with each.

$chart channel hide

Hides a channel

Arguments

channel : String : The name of the channel you would like to hide : arg index 0 : default none

group : String : The name of the group the channel you would like to hide belongs to: arg

index 1 : default none

Use case

This can be used to hide some channels from the main chart window, so you can focus on

only the channels you are interested in. If you are streaming from a device with many

channels or you have added your own custom channels or synthetic channels to the main

chart it can get cluttered. Hiding a channel simply stops the channel from being drawn but the

data for that channel is still recorded so it can be added back into the chart later.

$chart channel show

Shows a channel

Arguments

channel : arg index 0 : String : The name of the channel you would like to show : default

none

group : arg index 1 : String : The name of the group the channel you would like to show

belongs to : default none

Use case

If you have previously used “$chart channel hide” you can use “$chart channel show” to

show the channel again. This is particularly useful when you are automating taking

screenshots and would like multiple shots of the same area of the graph but showing different

channels in each shot.

$chart reposition

Sets the chart main view to the specified start and end times

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 35 of 47

Arguments

startTime : The start time that the chart window will show from : arg index 0 : String : default

None

endTime : The end time the chat window will show time until : arg index 1 : String : default

None

Use case

If you know the time in which a test took place in your stream then you could use this

command to fit the chart window to exactly that position. This can be very powerful when

coupled with the snapshot and channel show/hide commands to automate screenshots of test

sections for report generation.

Both the start and end times are specified as a time-unit pair; for example: 100mS

Both start time and end time must be larger than 0 and start time must be larger than end

time.

$chart snapshot

Takes a snapshot of the QPS Window

Arguments

type : Type of snapshot to take consisting of a comma separated list of options: [all, chart,

timeline, key]: arg index 0 : String : default “all” : Acceptable values: [all, chart, timeline,

key]

filePath : Optional file path instead of using default archive path : arg index 1 : String :

default None

Use case

This can be used to screenshot qps and saved to file for later use in reports or presentations.

The command can be used with chart reposition and channel show/hide to automate many

different displays of test data on the chart view.

$debug list commands

Returns a list of commands

Arguments

None

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 36 of 47

Use case

This is an internal command used to list the commands in a specific format for internal

testing. If you have come across this… these are not the droids you are looking for. Move

along.

$module connect

Connects QPS to the provided Quarch Module and opens the Chart main view read to use

QPS with that module.

Arguments

device : The device you would like to connect to : arg index 0 : String : Default none

Use case

You must connect to a module before getting stream data from it.

$module connect TCP::QTL1999-01-001

$module connect USB::QTL1999-01-001

$module disconnect

Disconnects the current Quarch module connection

Arguments

None

Use case

To free up the current quarch module to be used by another part of your script.

$module list

Lists available quarch modules

Arguments

None

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 37 of 47

Use case

You may want to check your devices is visible to QPS before continuing with your script.

This command allows you to receive a list of all visible devices QPS can see.

$module list details

Lists available quarch modules in detail

Arguments

None

Use case

You may wish to see all available devices and parse details from them before deciding what

to connect to.

$module name

Returns the connected Quarch modules name

Arguments

None

Use case

This is very useful for confirmation of the connected device and is useful to add to reports

generated to keep track of what modules were used during tests.

$module scan

Starts a scan for new Quarch modules (Use $module list to display found modules)

Arguments

deviceSpecifier : TCP/IP address to scan for devices : arg index 0 : String : default none

Use case

Used to scan for devices on a specific IP address. Usually needed when devices are on

different subnets.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 38 of 47

$open recording

Opens a QPS recording file into the chart view

Arguments

qpsFile : The file to be opened : arg index 0 : String : default None

Use case

To automate opening a recording. This could be used to open old recordings gather stats and

then move onto the next saved recording for mass data processing.

$open recording qpsFile="C:\quarch\recordings\AC\AC_Gen_test\AC_Gen_Test.qps"

$qis launch

Launches new QIS instance

Arguments

None

Use case

Only to be used If QIS has been shutdown. QPS Launches QIS automatically on start up so

you would rarely need to use this command.

$qis shutdown

Shuts down current QIS instance

Arguments

None

Use case

In the rare event you wish to close a crashed QIS or you are comparing different versions of

QIS with the same QPS. Mainly an internal command.

$qps hide

Hides the QPS application

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 39 of 47

Arguments

None

Use case

If you wanted to run fully automated then you could hide QPS so it runs in background not

showing the main chart view.

$qps show

Shows the QPS application

Arguments

None

Use case

To show a QPS application had had been hidden, potentially at the end of the entire test.

$stream annotation add

Adds an annotation to a stream. Annotations are used to mark points in time like the start of a

test and stats between annotations are automatically calculated in the stats grid.

Arguments

time : Annotation time : arg index 0 : string default none

text : annotatoin title : arg index 1 : String : default ““

extraText : Additional annotation text : arg index 2 : String : default ““

ypos : y position percentage on screen : arg index 3 Int Range [0:100] : default 100

type : type string used when assigning colour and text colour : arg index 4 : String : default

Type1

colour : colour of annotation icon : arg index 5 : Hex : default #FF0000

textColor : colout of annotation text : arg index 6 : Hex : default #FF0000

timeFormat : format for arg time : arg index 7 : String [elapsed, unix] : default elapsed

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 40 of 47

Use case

Annotations are very useful and are usually added at the start and end of tests where more

that one test is ran per stream. Stats are auto generated between annotations and can be

exported at any time.

$stream annotation add 7S Annotation1

$stream annotation add 7500mS Annotation2

$stream annotation add 00:00:08 Annotation3

$stream annotations list

Returns a list of all annotations

Arguments

type : Specifies the type of annotations : arg index 0 : String [all, annotations, comments] :

default all

Use case

If you wanted to gather the list of all annotations and/or comments comments added to the

stream, this command returns that information which can be parsed to check what tests have

ran or whatever information you have added to your annotations and comments.

$stream annotations table

Returns a table of all annotations

Arguments

type : Specifies the type of annotations : arg index 0 : String [all, annotations, comments] :

default “all”

timeFormat : Specifies the time format : arg index 1: String [nS, uS, mS, S, HMS] : default

“S”

Use case

This returns a table containing annotation and or comment information for the current stream.

There is much more detail in this that $stream annotation list such as extra text

$stream channel add

Creates a new channel

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 41 of 47

Arguments

channelName : name of the channel to be added :Index: 0 : Type: STRING :Default value:

NONE

channelGroup : group of the channel to be added : Index: 1 : STRING Default value: NONE

baseUnits : units of the channel to be added : index 2 : String : default value None

usePrefix: Indicates whether scientific notation prefix : index 3 : default value None

Use case

Create a custom channel such which you populate with data yourself from script. This could

be drive temperature and could be added live to the stream.

$stream channel add synthetic

Defines a new channel function

Arguments

channel : Defines the synthetic channel : arg index 0 : String : default none

function : Specifies the synthetic function arg index 1 : String : default none

Use case

To add a channel that is based on another channel. You might want to plot the Root Square

Mean of a channel for example.

$stream channel add synthetic channel="chan(L1_RMS,V)" function="rms(100ms,

chan(L1,V))"

$stream channel clear synthetic

Clears all created functions

Arguments

None

Use case

Clears all synthetic channels from stream

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 42 of 47

$stream channel list

Returns a list of all channels in the stream

Arguments

None

Use case

List the Channels in the stream

$stream channel table

Returns details on all channels in the stream

Arguments

channelType : Defines the user or synthetic channel: arg index 0 : String : default “all”

Use case

To get detailed information about the channels in the stream.

$stream channel remove synthetic

Deletes a previously created channel function

Arguments

channel : Specifies the synthetic channel : arg index 0 : String : default None

Use case

Specifies the synthetic channel to be removed.

$stream channel remove synthetic channel="chan(L1_RMS,V)"

$stream channel table

Returns details on all channels in the stream in detail

Arguments

channelType : Defines the user or synthetic channel : arg index 0 : String : default “all”

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 43 of 47

Use case

If you wanted to know what channels were in the stream, the sources of their data, and how

they are calculated if synthetic.

$stream channels

Returns just the names of the channels in the stream

Arguments

None

Use case

If you simply want a list of all channels in the current stream.

$stream comment add

Adds a comment to the stream (Comments are the same as annotations but don’t interact with

stats calculations)

Arguments

time : Comment time : arg index 0 : string default none

text : Comment title : arg index 1 : String : default ““

extraText : Additional comment text : arg index 2 : String : default ““

ypos : y position percentage on screen : arg index 3 Int Range [0:100] : default 100

type : type string used when assigning colour and text colour : arg index 4 : String : default

Type2

colour : colour of comment icon : arg index 5 : Hex : default #FFFF00

textColor : colout of comment text : arg index 6 : Hex : default #FFFF00

timeFormat : format for arg time : arg index 7 : String [elapsed, unix] : default elapsed

Use case

You may with to annotate a stream visually by adding a marker to the chart but not have it

effect the stats calculation, such as at the end of a stream you could add a comment at the

peak of one of your channels.

$stream comment add 10.25S Comment1

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 44 of 47

$stream comment add 11000mS Comment2

$stream comment add 00:00:12 Comment3

$stream data add

Adds a datapoint of a given value at a certain time to the specified channel

Arguments

channel: channel name : arg index 0 : String : default None

group : group the channel belongs to : arg index 1 : String : default None

time : The time the data is to be added at: arg index 2: String : default None

value : the value of the data to be added: arg index 3 : String : default None

TimeFormat : format for value time : arg index 4 : String ["elapsed", "unix"] default

"elapsed"

Use case

If you have a custom channel such as temperature you can plot temperature at a given time y

for value x.

All data is linierly interpolated but if you would like the interpolation to stop between two

points then use an end marker.

To indicate the end marker of an interval then set the value to 'endSeq'; eg

$stream data add 'Fet1Temp', 'Temperature', '1100ms' ‘endSeq', 'elapsed’

$stream export

Saves the stream data to file in the specified format

Arguments

file : The file path to save the export : arg index 0 : String : default None

maxLines : max number of lines per file : arg index 1 : String : default all

lineTerminator : Indicates whether to use a lineTerminator: arg index 2 : String [yes/no] :

default “yes”

delimiter : Value seperator : arg index 3 : String ["\t", ";", ",", " "] : default “,”

fileType : file format : arg index 4 : String [“csv”]: default “csv”

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 45 of 47

Use case

Export the stream to a csv file for post processing.

$stream read

Reads stream data between from a given start point and end point

Arguments

startTime : read start point : arg index 0 : Int : default None

endTime : read end point : arf index 1 : Int : default None

timeFormat : timeFormat : arg index 2: String [elapsed, unix] : default “elapsed

Use case

You may want to read the stream data back for a specified time for processing in script.

$stream record

Starts the QPS stream

Arguments

file : the path to file where you would like to stream data to: arg index 0 : String : default

None

Use case

Used to start a stream from Quarch module to QPS.

$stream record duration

Returns the total stream recording time

Arguments

timeFormat : timeFormat : arg index 0 : String [nS, uS, mS, S, HMS] : default “S”

Use case

If you want to find out the QPS stream running time total for use in your automation scirpt.

Notes:

A value of -1 is returned if streaming has not commenced

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 46 of 47

$stream start time

Returns the time that streaming started

Arguments

timeFormat : timeFormat : arg index 0 : String [nS, uS, mS, S, HMS] : default “S”

Use case

To find out the time the stream started.

Notes:

A value of -1 is returned if streaming has not commenced

$stream stats export

Saves the statistics to a given format

Arguments

file : file for stats to be save to : arg index 0 : String : Default None

fileType : format of data in file: arg index 1 : String [“csv”] : Default None

Use case

Used to save the stats to file for processing later.

$stream stats table

Returns the stream statistics

Arguments

startTime : start point for stats : arg index 0 : int : default None

endTime : end point for stats : arg index 1 : int : default None

timeFormat : timeFormat : arg index 2: String [elapsed, unix] : default “elapsed

Use case

Use this command to get back all the stats information based on the annotations set, or pass a

start and end time to calculate stats between those two points.

 Quarch Automation Manual

Revision 1.5 © Quarch Technology 2019-2024 Page 47 of 47

$stream stop

Stop the current stream

Arguments

None

Use case

To stop the current running stream.

$stream stop time

Returns the time that streaming stopped

Arguments

timeFormat : timeFormat : arg index 0 : String [nS, uS, mS, S, HMS] : default “S”

Use case

Find the time when the stream stopped for processing in your scripts.

A value of -1 is returned if streaming has not commenced

